AUTHOR
TITLE
INSTITUTION
REPORT NO
pub date
NOTE
JOURNAL CIT
EDRS PRICE
DESCRIPTORS

Seashore, Harold G.
Methods of Expressing Test Scores. Psychological Corp. , New York, N.Y. Bull-48
Jan 55
4p.; Reprint from Test Service Bulletin
Test Service Eulletin; n48 p7-10 Jan 1955

MF- $\$ 0.65 \mathrm{HC}-\$ 3.29$
Bulletins; *Intelligence Tests; *Faw Scores; *Scores; *Statistical Analysis; *Test Results

ABSTRACT

The simplicity of standard score syst s, percentile equivalents, and their relation to the ideal normal di-cribution are discussed and illustrated. Standard scores are z-scores, the T-scores, College Entrance Examination Board.scores, and Army General Classification Test scores. A derivarive of the general standaria score system is the stanine plan, which divides the norm population into nine groups and nine percentages which indicates the percent of the total population in each of the stanines. Interpretation of the Wechsler scales depends on a knowledge of standard scores. \bar{A} subject's raw score on each of the subtests in these scales is converted, by appropriate norm tables, to a standard score, based on a mean of 10 and a standard deviation or 3. The sums of standard scores on the Verbal scale, the Performance Scale, and the Full Scale are then converted into IQ's. These IQ's based on a standard score mean of 100; the standard deviatn of the IQ's set at 15 points. IQ's of the type used in the Wechsler scales are known as "deviation IQ's" as contrasted with the IQ's developed from scales in which a derived mental age is divided by chronological age. (For related document, see TM 002 944.) (DB)

Published from time to time in the interest of promoting greater understanding of the principles amd techniques of mental measyrement and its applicutions in guidence, persomn:l wo.k. and clinical psychology, and for announcing new puidications of interest. Address communicialuns to 304 East 45th Sircet, New York 17, A.Y.

Haron.d G. Sinsmore, Editor
Director of the Tese Division
Director of the Test Division
Alexander G. Wisman
Associate Director of the Test Division

Jerome E. Doppelt
Assistant Director
James H. Ricks. Jr. Assistant Director

Dorotioy M. Clendenen Arsistant Director

Fsther R. Hollis Advisory Service

METHODS OF EXPRESSING TEST SCORES

AN individual's test score acquires meaning when it can be compared with the sccres of well-identified groups ef people. Manuals for tests provide tables of norms to make it easy to compare individuals and groups. Several systems for deriving more meaningful "standard scores" from raw scores have been widely adopted. All of them reveal the relative status of individuals within a group.
ane fundamental equivalence of the most popular standard score systems is illustraced ia the chart on the - next page. We hope the chart and the accompanying description will be useful to counselors, prrsonnel officers, score systems, percentile equivalents, and their relation to the ideal normal distribntion.

Sooner or later, every textbook discussion of test scores introduces the bell-shaped normal curve. The student of testing soon learns that many of the methods of deriving meaningful scores are auchored to the dimensions and characteristics of this curve. And he learns by observation of actual test score distributions that the ideal mathematical curve is a reasonably good approximation of many practical cases. He learns to use the standardized properties of the ideal curve as a model.

Let us look first at the curve itself. Notice that there are no raw scoes printed along the baseline. The graph is generalized; it describes an idealized distribution of scores of any group on any test. We are free to use any numcrical scale we like. For any particular set of scores, we can be arbitrary and cali the average score zero. In technical terms we "equate" the mean raw score to zero. Similarly we can choose any convenient number, say 1.00 , to represent the scale distance of one standard deviation. ${ }^{\text {P }}$ Thus, if a distribution of scores on a particular test has a mean of 36 and a standard deviation of 4 , the zero point on the baseline of our curve would be equivalent to an original score of 36 ; one unit to the right, $+1 \sigma$, would

[^0]be equivalent to $40,(36+4)$; and one unit to the left, -1σ, would be equivalent to $32,(36-4)$.
The total area under the curve repissents the total number of scores in the distribution. Vertical lines have been drawn through the score scale (the baseline) at zero and at $1,2,3$, and 4 siorma units to the right and left. These lines mark of subareas of the total area under the curve. The numbers printed in these subareas are jer cents-percentages of the total number of people. Thus, 34.13 per cent of all cases in a normal distribution have scores falling between 0 and -la. For practical purpnses we rarely need to deal with standard deviation units below -3 or above +3 ; the percentage of cases with scores beyond $\pm 3 \sigma$ is negligible.

The fact that 68.26 per cent fall between $\pm 1 \sigma$ gives rise to the common statement that in a normal distribution roughly two thirds of all cases lie between plus and minus one sigma. This is a rule of thumb every test user should keep in mind. It is very near to the theoretical value and is a useful approximation.

Below the row of deviations expressed in sigma units is a row of per cents; these show cumulatively the percentage of people which is included to the left of each of the signia points. Thus, starting from the left, when we reach the line erected above $-2 v$,

The contents of this Bulletin are not copyrighted; the articles may be quoted or reprinted without formality other than the customary acknowledgment of the Test Service Bulletin of The Psycholocical Conpobatron as the source.

TESTSERVICEBULLETIN

NOTE: This chart cannot be uscd to equate scores on one test to scotes on another test. For example, both 600 on the CEEB and 120 on the AGCT are ons standard deviation above their respectice means, but they do not represent "equol" standings because the scores were obtained from different groups.
we have included the lowest 2.3 per cent of cases. These percentages have been roliaded in the next row.

Note some other relationships: the area between the \pm Ir points includes the scores which lie above the 16 th percentile ($-\cdot 1 \sigma$) and below the Sth percentile $(+1 \sigma)$ - two major reference points all test users should know. When we find that an individual has a score lo above the mean, we conclude that his score ranks at the S4th percentile in the group of persons on whom the test was normed. (This conclusion is good provided we also add this clause, at least sub.
vocally: if this particular group reasonably approximates the idcal normal model.)

The simplest facts to memorize about the normal distribution and the relation of the percentile system to deviations from the average in sigma units are seen in the chart. They are

Deviation from the mean	-2σ	-1σ	0	$+1 \sigma$	$+2 \sigma$
Percentile equivalent	2	16	50	84	98

To avoid cluttering the graph refarence lincs have not been drawn, but we crold mark olf ten per cent sections of area under the normal curve by drewing lines vertically from the indicated decile points ${ }^{\prime}(10$, $20, \ldots 80,90)$ up through the graph. The reader might do this lightly with a colored pencil.
We can readily sce that ten per cent of the area (people) ai the middle of the distribution embraces a smallor distance on the basclinc of the curve than ten per cent of the area (people) at the ends of the range of scorcs, for the simple reason that the curve is much higher at the middic. A person who is at the 95th percentile is farther away from a person at the 85th percentile in units of test score than a person at the 55 th percentile is from one at the $45 t^{2}$ percentile.
The remaindcr of the chart, that is the several scoring scalcs drawn parallel to the baselinc, illustrates variations of the deviation score principlc. As a class these are called standurd scorcs.

First, there are the z-scores. These are the same numbers as shown ca the baseline of the graph; the only difference is that the expression, σ, has been omitted. These scores rum, in practica! terms, from -3.0 to +3.0 . One can compute them to more decimal places if one wishes, although computi:g to a single decimal place is usually svijicient. One can compute z-scores by equating the mean to 0.00 and the standard deviation to 1.00 for a distribution of any shape, but the relationships shown in this figure between the z-score equivalents of raw scores and percentile equivalents of raw scores are correct only for normal distributions. The interpretation of standard score systems derives from tine idea of using the normal curve as a model.

As cen be seen, T-scores are directly related to z-scores. The mean of the raw scores is equated to 50 , and the standard deviation of the raw reores is equated to 10 . Thus a 2 -score of +1.5 means the same as a T-score of 65. T-scores are usually expressed in whole numbers from about 20 to SO . The T -score plan eliminates negative numbers and thus facilitates many computations. ${ }^{2}$

The College Entrance Examination Board uses a plan in which both decirnals and negrative numbers are avoided by setting the arbitrary mean at 500 points and the arbitrary sigma at another convenient unit, namely, 100 points. The expericnced tester or counselor who hears of a College Board SATV-V score of 5.50 at orice thinks, "Half a sigma (50 points) above average (500 points) on the CEEB basic norms."

[^1]And when $h \cdot$ hears of a score of 25 on SAT-N, he can interpret, "Ylus 2 Ni . The efore, better than the 9Sth percentile."
During World . Jar 11 the Navy ased the T-score plan of reporiing test status. The Army used still another systerit with a mean of 100 and a standard deviation cf 20 points.

Another drrivative of the general standard score system is the stanine plar. develuped by psychologists in the Air loorce during the war. The plan divides the norm population into nanc groups, hence, "standard nines." Exccip ${ }^{\prime}$ for stanine 9, the top, and stanir: 31 , the bottom, these groups are spaced in half-sigma units. Thus, stanine 5 is defincd as iucluding the people who are within $\pm 0.25 \sigma$ of the me: n. Stanine 6 is the groun defined iy the half-sigma distance on the bascline betwe?n $+0.25 \sigma$ and +0.75 r. Stanines 1 and 9 include all persons who are below -1.750 and above $+1.75 \sigma$, respectively. The result is a distribution in which the mean is 5.0 and the standard deviation is 2.0.

Just below the line showing the demareation of the nine groups in the stani, es system there is a row of percentages which indicates the per cent of the total population in eact. of the stanines. Thus 7 per cent of the population will be in stanine 2 , and 20 per cent in the middle group, starine 5 .
Interpretation of the Wechsler scales (W-B I, W-B II, WISC, and WAIS) decper.'s on a knowledge of standard scores. A subject's raw score on each of the subtests in these scales is converted, by appropriate norms talics, to a standard score, based on a mean of 10 and a standard deviation of 3 . The sums of standard scores on the Verbal Scale, the Performance Scale, and the Full Scale are then converted into IQs. These IQ s arc bascd on a standard score mean of 100 , the conventional number or representing the $1 Q$ of the average person in a given age group. The standard deviation of the $I Q s$ is set at 15 points. In practical terms, then, rouglily two-thirds of the IQs are between 85 and 115 , that is, $\pm 1 \sigma .^{3}$ IQs of the type used

[^2]
[^0]: TThe mathematical symbol for the standard deviation is the lower case Greek letter sigma or c. These terms are used interchangeably in this article.

[^1]: 2T-scores and percentiles both have 50 as the main reference point, an occasional source of confusion to thove who do not insist on careful labelling of dat:i and of scoures of individuals in their records.

[^2]: 3Every once in a while we reccive a letter from someone who suggests that the Wechsler scales ought to genere.e a wider range of $1 Q:$. The repiy is very simple. If we want a wider range of IQs all we have to do is to choose a larger arbirrary standard deviation, say, 20 or 25 . Under the preeent system, $\pm 3 \sigma$ gives IQs of 55 io $1+5$, with a few rare cases below and a few rare cascs above. If we used 20 as the standard deviation, we would arbitrarily increase the $\pm 3 \sigma$ range of IQs from 55^{-} 145 to 40-160. This is a wider range of numbersl But, test users should never forget that adaptations of this kind do not ciange the responses of the people who took the test, do not change the order of the persons in relation to each other, and do not change the psychological meaning attached to an IQ.

